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We present a design of a microfluidic mixer based on hydrodynamic focusing which
is used to initiate the folding process (i.e., changes of the molecular structure) of
a protein. The folding process is initiated by diluting (from 90% to 30%) the local
denaturant concentration (initially 6 M GdCl solution) in a short time interval we
refer to as mixing time. Our objective is to optimize this mixer by choosing suitable
shape and flow conditions in order to minimize this mixing time. To this end, we first
introduce a numerical model that enables computation of the mixing time of a mixer.
This model is based on a finite element method approximation of the incompressible
Navier-Stokes equations coupled with the convective diffusion equation. To reduce
the computational time, this model is implemented in both full three-dimensional
(3D) and simplified two-dimensional (2D) versions; and we analyze the ability of
the 2D model to approximate the mixing time predicted by the 3D model. We found
that the 2D model approximates the mixing time predicted by the 3D model with a
mean error of about 15%, which is considered reasonable. Then, we define a mixer
optimization problem considering the 2D model and solve it using a hybrid global
optimization algorithm. In particular, we consider geometrical variables and injection
velocities as optimization parameters. We achieve a design with a predicted mixing
time of 0.10 μs, approximately one order of magnitude faster than previous mixer
designs. This improvement can be in part explained by the new mixer geometry
including an angle of π /5 radians at the channel intersection and injections velocities
of 5.2 m s−1 and 0.038 m s−1 for the side and central inlet channels, respectively.
Finally, we verify the robustness of the optimized result by performing a sensitivity
analysis of its parameters considering the 3D model. During this study, the opti-
mized mixer was demonstrated to be robust by exhibiting mixing time variations
of the same order than the parameter ones. Thus, the obtained 2D design can be
considered optimal also for the 3D model. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4793612]

I. INTRODUCTION

Proteins are composed of chains of amino acids which can assume complex three-dimensional
(3D) structures. Protein folding refers to the processes by which inactive proteins (unfolded chains
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FIG. 1. Typical domain representation of the microfluidic mixer geometry considering the 3D model: in dark gray we
represent the domain �3D,s used for numerical simulations. The geometry’s symmetry planes are highlighted and labeled.

of amino acids) acquire the 3D shapes (called folded) enabling them to perform a wide range of
biological functions.1, 2 The applications of protein folding in research and industry are numerous,
including, drug discovery, DNA sequencing and amplification, molecular diagnostics, and food
engineering (see, for instance, Refs. 3–5). Protein folding can be initiated, for instance, by using
photochemical initiation,6 changes in temperature and/or pressure4, 7 or changes in chemical potential
(such as concentration of a chemical specie).8, 9 All these techniques provide perturbations of a protein
conformational equilibrium,1, 10 necessary to begin folding. The folding techniques based on rapid
changes in concentration of chemical species are among the most versatile.11

The original concept of a micromixer based on diffusion from (or to) a hydrodynamically focused
stream was first proposed by Brody et al. in Ref. 12. As shown in Figure 1, this kind of mixer is
composed of three inlet channels and a common outlet channel. It is symmetric with respect to its
center channel. In the center inlet channel, a mixture of unfolded proteins and a chemical denaturant
is injected, whereas in the two side inlet channels, a background buffer is introduced. The objective
is to rapidly decrease the denaturant concentration in order to initiate protein folding in the outlet
channel.13 Since the publication of Brody et al., there have been significant advances in this field. As
summarized by Hertzog et al.14, 15 and Yao and Bakajin,16 these include reduction in consumption
rate of reactants, methods of detection, fabrication, and, the most important improvement, reduction
of the so called mixing time (i.e., time needed to reach a required denaturant concentration threshold).
Indeed, the lower is the mixing time, the higher is the proportion of folded proteins in the outlet
stream. For example, while the original mixer of Brody et al.12 showed mixing times greater than
10 μs (given the mixing measures used here), Hertzog et al.14 obtained mixing times of 1.2 μs.
Furthermore, Hertzog et al.14, 15 and Yao and Bakajin16 pointed out the importance of 3D flow effects
and flow inertia in the designs of these mixers but, due to computational limitations, they considered
only 2D flow models.

In this article, we present both 2D and 3D modeling for the optimization of the shape and flow
conditions of a particular hydrodynamic focused microfluidic mixer. Our objective is to improve
a specified mixing time of this device taking into account that, currently, the best mixer designs
exhibit mixing times of approximately 1.0 μs.14, 16 To do so, we first introduce a mathematical
model which computes mixing time for a given mixer geometry and injection velocities. We develop
2D and 3D versions of this model in order to study the ability of the 2D model to approximate
key results of the 3D model. Then, we define the considered optimization problem based on the
2D model. We note that our 2D model is more complex than the one presented in Refs. 14 and 17,
as it includes new variables such as both the angle of inlet channels near the intersection and inlet
flow velocities. This problem is solved by considering a hybrid global optimization method which
is itself an improvement of a technique previously used for designing microfluidic mixers.17 Finally,
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using the 3D model, we analyze the proposed optimized mixer to check the validity of the approach
to designing based on the 2D model and also its robustness to parameters perturbations.

The paper is organized as follows: Sec. II introduces the 2D and 3D models used to compute
the mixing times. Section III describes the numerical experiments carried out during this work:
a comparison of the models, the optimization process, and sensitivity analysis. Finally, Sec. IV
presents our optimized design results and compare them to published studies.14, 17

II. MICROFLUIDIC MIXER MODELING

Here we detail the mathematical models used to perform both optimization process and sensi-
tivity analysis. More precisely, in Subsection II A, we define the 2D and 3D models which describe
the denaturant concentration distribution of the mixer. In Subsection II B, we introduce the mixer
parameterization determining its shape and flow conditions. Finally, in Subsection II C, we show
how mixing time is computed.

Note that the type of model and numerical approach used here to predict mixing times for a
given geometry and flow conditions have been validated experimentally in previous studies, including
Refs. 14, 15, and 16.

A. Mathematical model

We consider the microfluidic hydrodynamic focusing mixer introduced in Sec. I.
Let �3D be the domain defined by the mixer shape in 3D. A typical representation of �3D is

depicted in Figure 1. The mixer geometry has two symmetry planes that can be used to reduce the
simulation domain. Therefore, it is only necessary to study a quarter of the mixer, denoted by �3D,s

and represented in dark gray in Figure 1. Furthermore, �3D,s can be approximated considering a 2D
projection, as suggested in other works.14, 18, 19 A representation of this projection, denoted by �2D,s,
is shown in Figure 2.

For the sake of simplicity, the system of coupled equations introduced below and describing
the distribution of the denaturant concentration in the mixer is defined only for the 2D case. The
3D model can be obtained easily by extruding the domain �2D,s, the equations and the boundary
conditions with the considered mixer depth (i.e., mixer length in the Z-axis).20

In order to simplify the notations, we introduce � = �2D,s. In the boundary of �, denoted by
�, we define: �c the boundary representing the center inlet; �s the boundary representing the side

Exit region

Center inlet

Side inlet

Ω

A
xi

al
 s

ym
m

et
ry

ls

X

Y

l1

l2

h1

h2

uc

us

lc

le

(cx1, cy1)

(cx2, cy2)

θ

ΓsΓw2

Γe

Γw1

Γc

Γ
a

FIG. 2. Typical representation of the domain �2D,s and parameterization of the microfluidic mixer considered for the
optimization process.
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inlet; �e the boundary representing the outlet; �w1 the boundary representing the wall defining the
lower corner; �w2 the boundary representing the wall defining the upper corner; �a the boundary
representing the Y-axis symmetry. A geometrical representation of these boundaries is given in
Figure 2.

We assume the mixer liquid flow is incompressible.15 Thus, the concentration distribution of
the denaturant is described by using the incompressible Navier-Stokes equations coupled with the
convective diffusion equation.21 Since we do not need the behavior of the device during its transient
set up, only steady configurations are considered. More precisely, we approximate the flow velocity
and the denaturant concentration distribution by considering the solution of the following system of
equations:14, 15

⎧⎪⎨
⎪⎩

−∇ · (η(∇u + (∇u)�) − p) + ρ(u · ∇)u = 0 in �,

∇ · u = 0 in �,

∇ · (−D∇c) + u · ∇c = 0 in �,

(1)

where c is the denaturant normalized concentration distribution, u is the flow velocity vector
(m s−1), p is the pressure field (Pa), D is the diffusion coefficient of the denaturant in the background
buffer (m2 s−1), η is the denaturant dynamic viscosity (kg m−1 s−1), and ρ is the denaturant density
(kg m−3).

System (1) is completed by the following boundary conditions:
For the flow velocity u:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u = 0 on �w1 ∪ �w2,

u = −uspara1n on �s,

u = −ucpara2n on �c,

p = 0 and (η(∇u + (∇u)�))n = 0 on �e,

n · u = 0 and t · (η(∇u + (∇u)�) − p)n = 0 on �a,

(2)

where us and uc are the maximum side and center channel injection velocities (m s−1), respectively;
para1 and para2 are the laminar flow profiles (parabolas for the 2D case and paraboloids of revolution
for the 3D case) equal to 0 in the inlet border and unity in the inlet center;21 and (t, n) is the local
orthonormal reference frame along the boundary.

For the concentration c:⎧⎪⎪⎨
⎪⎪⎩

n · (−D∇c + cu) = −c0u on �c,

c = 0 on �s,

n · (−D∇c) = 0 on �e,

n · (−D∇c + cu) = 0 on �w1 ∪ �w2 ∪ �a,

(3)

where c0 = 1 is the initial denaturant normalized concentration in the center inlet. We note that the
first equality in (3) corresponds to the inward denaturant flux in the center inlet channel and the third
equality to the convective flux leaving the outlet channel.

B. Mixer parameterization

We first introduce the parameterization used to describe the mixer shape �. We consider several
constraints related to the mixer microfabrication process:15, 22, 23 (i) the desired structural strength of
the device requires a maximum angle θ at the intersection channels of π /3; (ii) the depth of the mixer
is set to 10 μm to avoid clogging issues, to account for the resolution limits of confocal microscopy
(used to measure experimentally the mixing time) and to mitigate the effects of the top and bottom
walls on mixing dynamics; (iii) the width of the side and center channel nozzles (i.e., the length of
�c and twice the length of �s, respectively) are set to 2 μm and 3 μm, respectively; and (iv) the
mixer maximum length (i.e., length in the X-axis) and the mixer maximum height (i.e., length in the
Y-axis) are set to 24 and 30 μm, respectively.

Taking these limitations into account, the mixer shape is described by rational Bézier curves
and two ellipsoids. The latter are denoted as ellipsoids 1 and 2, where part of the ellipsoid 1
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joins, in �w1, the outlet and side channels, and part of the ellipsoid 2 joins, in �w2, the center
and side channels. These curves are determined by the following parameters (see Figure 2 for
their geometrical representation), suitably bounded to avoid non-admissible shapes (i.e., shape with
intersected curves): the angle θ ∈ [0, π /3] between �c and the direction normal to �s; the length of
the center inlet channel lc ∈ [2.5 μm, 5 μm]; the length of the side inlet channel ls ∈ [1 μm, 9 μm];
the length of the outlet channel le ∈ [0.1 μm, 20 μm]; the coordinates of the center of the ellipsoid
i, with i = 1, 2, (cxi, cyi), where cx1 ∈ [0.8 μm, 3 μm], cy1 ∈ [le μm, le + 2 μm], cx2 ∈ [0.8 μm,
0.9 μm], and cy2 ∈ [cy1 + 1 μm, cy1 + 3) μm]; the radius li in the X-axis of the ellipsoid i, with i
= 1, 2, satisfies li ∈ [0 μm, (cxi − 0.5) μm]; the radius hi in the Y-axis of the ellipsoid i, with i = 1,
2, hi, satisfies h1 ∈ [0 μm, (cy2 − cy1 − 1) μm] and h2 ∈ [0 μm, (cy2 − cy1 − 1 − h1) μm].

In addition to those parameters, we also consider the maximum injection velocities us and uc as
design variables. Furthermore, in order to maintain laminar flow and to avoid secondary flows in the
outlet channel, such as Dean vortices,24, 25 we constrained the typical flow Reynolds Re to less than
15.16, 21, 23 We define Re = ρusL/η, where L = 3 μm is the side channel nozzle width. This implies
that us ≤ ηRe/ρL m s−1. Moreover, in practice, uc should be at least 10 times lower than us to ensure
a good mixing between fluids.14 Therefore, we impose that us ∈ [0, ηRe/ρL] m s−1 and uc = p × us,
where p ∈ [0.001, 0.1].

Remark 1: The choice of the maximum injection velocities us and uc impact the flow velocity
at the outlet channel. However, after mixing, proteins should travel sufficiently slowly to obtain
quantitative measures of their degree of folding.26, 27 Considering a Knight mixer, such as the one
introduced here, this problem can been issued by dramatically widen the outlet channel width. For
instance, in Ref. 15, the authors designed mixers where the exit channel width increased linearly or
exponentially after the mixing region. Using this approach, they were able to experimentally quantify
the folding kinetics of proteins traveling through a center stream with a velocity of 2.9 m s−1.

Thus, the set of parameters defining a particular mixer design is denoted by

φ = {us, p, θ, lc, ls, le, cx1, cy1, l1, h1, cx2, cy2, l2, h2} ∈ 	,

where 	 = 
14
i=1[	(i),	(i)] ⊂ IR14 is the admissible space; and 	(i) ∈ IR and 	(i) ∈ IR are the

upper and lower constraint values of the ith parameter in φ previously described, respectively.

C. Mixing time

There are no general, widely accepted definitions of mixing time (see Refs. 28 and 29). Here the
considered mixer is designed to quantify folding kinetics (via fluorescence measurements) of single
proteins traveling very near the center streamline of the vertical, center channel.15 Hence, we are
interested in a definition that characterizes the temporal resolution of the macromolecular folding
kinetics measurements which occur after the protein begins to fold.

In this work, the mixing time is defined as the time required to change the denaturant normal-
ized concentration of a typical Lagrangian stream fluid particle situated in the symmetry stream-
line at depth z = 0 μm (halfway between the top and the bottom walls) from α ∈ [0, 1] to
ω ∈ [0, 1].14–17 We remark that the choice of α and ω has a great impact on the mixing time. This
choice is influenced by several factors, such as the type of denaturant.13 For example, α is set by the
minimum denaturant concentration for which we can be confident the protein stays unfolded, while
ω is set by the maximum concentration for which we can be confident it folds.

Thus, the mixing time of a particular mixer described by the parameters φ ∈ 	, and denoted by
J2D for the 2D case and J3D for the 3D case, is computed by

Ji D(φ) =
∫ cφ

α

cφ
ω

dy

uφ(y)
, (4)

where i is the dimension of the problem (i.e., i = 2 or 3); uφ and cφ denote the solution of System
(1)–(3), in its iD version, when considering the mixer defined by φ; and cφ

α and cφ
ω denote, for the

2D case (3D case, respectively), the points situated along the symmetry streamline (the streamline
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defined by the intersection of the two symmetry planes z = 0 μm and x = 0 μm, respectively) where
the denaturant normalized concentration is α and ω.

III. NUMERICAL EXPERIMENTS

In this section, we first introduce our numerical implementation of the 2D and 3D models. Then,
we describe the numerical experiments accomplished to compare both models, to optimize the mixer
and to analyze both the validity and robustness of the optimized result.

A. Numerical implementation of the model

The numerical versions of both 2D and 3D models, presented in Sec. II, are implemented
by coupling MATLAB scripts (www.mathworks.com) with COMSOL Multiphysics 3.5a models
(www.comsol.com). More precisely, to compute a numerical solution of System (1)–(3), we consider
a Finite Element Method (FEM) with Lagrange P2-P1 elements to stabilize the pressure and to satisfy
the Ladyzhenskaya, Babouska, and Brezzi stability condition. The 2nd-order Lagrange elements
model the velocity and concentration components, while linear elements represent the pressure. The
Navier-Stokes equations are solved using Galerkin least square streamline and crosswind diffusion
methods in order to prevent numerical oscillations. The convective diffusion equation is solved by
considering an upwind scheme. We use a direct damped Newton method to solve the corresponding
linear systems. Finally the mixing time, defined by Eq. (4), is estimated by considering the solutions
of previous FEM model and a trapezoidal approximation of the integral. A complete description of
those techniques can be found in Ref. 30.

The computational experiments are carried out in a 2.8 GHz Intel i7-930 64 bits computer with
12 GB of RAM. For the 2D simulations described in Secs. III B and III C, we use a Delaunay mesh
with around 6000 elements. In that case, a single evaluation for J2D requires about 35 s. The 3D
simulations, conducted during Secs. III B and III D, are performed with a Delaunay mesh containing
13 000 elements. Each evaluation of J3D takes approximatively 30 min.

B. Comparison between 2D and 3D models

First, a comprehensive computational study is carried out to determine if both 2D and 3D
models yield similar mixing times when they are evaluated with the same set of parameters. Indeed,
if both models have a similar behavior, the computational effort for solving the optimization problem
presented in Sec. III C can be reduced by using the 2D model instead of the 3D one (see Sec. III A).

Let {φi }100
i=1 be a set of 100 mixers randomly generated in 	 by considering a uniform distribution.

For each one of them, we evaluate: the concentration distribution c2D(φi)(x, y), the velocity field
u2D(φi )(x, y), and the mixing time J2D(φi) for the 2D model; the concentration distribution c3D(φi)(x,
y, 0) and the velocity field u3D(φi )(x, y, 0) in the plane z = 0 μm, and the mixing time J3D(φi) for the
3D model. Then, we compute the relative difference, in percentage, between the solutions obtained
by the 2D and 3D models as following:

100
|J2D(φi ) − J3D(φi )|

J2D(φi )
, (5)

100∫
�

dxdy

∫
�

|c2D(φi )(x, y) − c3D(φi )(x, y, 0)|
|c2D(φi )(x, y)| dxdy, (6)

100∫
�

dxdy

∫
�

‖u2D(φi )(x, y) − u3D(φi )(x, y, 0)‖2

‖u2D(φi )(x, y)‖2
dxdy. (7)

Additionally, for each of those quantities, we calculate the mean, minimum, and maximum
values regarding the 100 generated mixers.
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Finally, we want to know if the 2D model preserves the same order of mixing time between two
particular mixers as the 3D model. To do so, we sort the previous 100 mixers by their J2D value, and
analyze in which proportion the order is maintained regarding J3D.

C. Design problem and considered global optimization algorithm

The objective is to design a microfluidic mixer described by parameters φ ∈ 	, where 	 ⊂IRN

and N = 14, that minimizes the mixing time function J2D defined in Sec. II C. Thus, the associated
optimization problem can be written as

min
φ∈	

J2D(φ). (8)

In order to solve Problem (8), we use the particular MATLAB implementation of a global opti-
mization algorithm, detailed in the Appendix, included in the software called Global Optimization
Platform and freely available at http://www.mat.ucm.es/momat/software.htm. We denote by φo the
result obtained at the end of the optimization process.

D. Analysis of the optimized result

First, we want to check the improvements obtained by our optimized mixer. Additionally, we
want to study the behavior of φo when considering the 3D model. Indeed, some important effects
cannot be appreciated with the 2D model, as for example, the impact of upper and lower mixer
walls on the velocity field or possible effects of certain secondary flows. To this aim, we analyze the
mixing time, the shape, the final concentration, and the velocity field of φo by considering both 2D
and 3D models and compare them to other results found in literature.14, 16, 17

Second, we want to perform a simple sensitivity analysis on φo. This study consists of randomly
perturb all the parameters of φo by taking uniform variations in a range of [−β%, +β%] of their
value. This perturbation process is repeated 100 times. For each perturbed mixer, denoted by φp,β

with p = 1, . . . , 100, we compute J3D(φp,β) and compare it to J3D(φo) through the relation

100
|J3D(φo) − J3D(φp,β )|

J3D(φo)
. (9)

Then we compute the mean, minimum, and maximum values of the Eq. (9) regarding the 100
perturbed mixers. The objective of the sensitivity analysis is twofold. On the one hand, we want to
know if φo is close to a local minimum of the design problem when considering the 3D model. To this
aim, we apply small perturbations of amplitude β = 1% and focus on the mixers with lower mixing
time than φo. On the other hand, we want to analyze the robustness of φo (i.e., the variations on its
mixing time) when the parameters are strongly perturbed. For this case, perturbations of amplitude
β = 5%, 10%, and 20% are taken into account.14

IV. NUMERICAL RESULTS

Here we present the results obtained by performing the experiments described in Sec. III when
considering the denaturant introduced in Sec. IV A. In particular, Sec. IV B studies the comparison
between the 2D and 3D models, and Sec. IV C analyzes the behavior of the optimized mixer.

A. Considered denaturant

During this work, we have considered guanidine hydrochloride (GdCl) as the denatu-rant.13

Indeed, GdCl is a Chaotropic agent which is frequently used for protein folding.
As a test case, we choose a 6 M GdCl solution as the center denaturant stream. This denaturant

solution is consistent with the experiments of Ref. 15. We approximate the dynamic viscosity of the
center stream η = 9.8 × 10−4 kg m−1 s−1, based on the measurements of Ref. 31. Furthermore, the
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TABLE I. Mean, minimum, and maximum percent variation (%) of the mixing time, concentration distribution in the plane z
= 0 μm and velocity field in the plane z = 0 μm obtained when considering the 100 microfluidic mixers randomly generated
during the 2D-3D comparison experiments detailed in Sec. III B.

Mean Minimum Maximum

Mixing time 15.3 1.2 56.7
Concentration 9.8 0.2 18.7
Velocity field 18.7 3.4 32.9

density of 6 M GdCl solution is ρ = 1010 kg m−3 and its diffusion coefficient in the background
buffer (assumed to be similar to water) is D = 2 × 10−9 m2 s−1.

According to those coefficients and the restriction Re = ρvL/η ≤ 15 introduced in Sec. II B,
the maximum side injection velocity is us ≤ 7 m s−1.

Finally, the values of α and ω in Eq. (4) have been adapted to GdCl by considering α = 0.9 and
ω = 0.3. It has been observed experimentally that a 3 times reduction of the GdCl concentration is
sufficient for the folding process of at least some proteins (see for instance Ref. 32).

B. Comparison between the 2D and 3D models

In Table I, we report the mean, minimum, and maximum relative percent variation values
between the solutions of Eqs. (5)–(7) obtained by the 2D and 3D models. The mean percent
variation in the mixing time is 15.3%, showing that the 2D model approximates, in a reasonable
way, the mixing time predicted by the 3D model. As can be seen, the largest percent variations
are obtained in the velocity field, with a mean percent variation of 18.7% versus only 9.8% for the
concentration distributions. From these results, we may conclude that the ability of the 2D model to
match the solutions (e.g., mixing time or concentrations) of the 3D model is sufficient.

An important feature of the 2D model is its ability to preserve the same order of mixing time
between two different mixer designs as the 3D model (i.e., if J2D(φ1) ≤ J2D(φ2) then J3D(φ1)
≤ J3D(φ2), for most of φ1 and φ2 ∈ 	). For this purpose, we represent in Figure 3 the 2D mixing
time of the 100 mixers previously generated, sorted according to their 2D mixing time, as well as
their respective 3D mixing times. The 3D mixing time order is preserved in 72% of the cases. In
addition, when the order between two consecutive mixers is not conserved, the difference in their
mixing times is, on average, about 12% which can be considered as a low value.
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FIG. 3. Mixing times of the 100 microfluidic mixers (called Scenarios), randomly generated during the 2D versus 3D
comparison process and sorted considering the 2D mixing time, as computed when considering (a) the 2D model and (b) the
3D model.
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TABLE II. Values of the optimized microfluidic mixer parameters presented in Sec. IV C.

Parameter us p θ lc ls le cx1

Value 5.2 7.3 × 10−3 0.6 2.5 9.1 16.3 1.1
Parameter cy1 l1 h1 cx2 cy2 l2 h2

Value 16.6 0.5 0.3 0.9 18.9 0.1 1.1

All these results suggest that the optimization process can be performed by using the 2D model
instead of the 3D one.

C. Analysis of the optimized mixer

The optimization problem (8) has been solved by considering the 2D model and the optimization
algorithm presented in Sec. III C. The number of evaluations of J2D used by multi-layer secant
algorithm (MSA) was about 6000 and the optimization process spent around 60 h. Notice that, as a
single evaluation of J3D takes approximately 30 min, solving the same optimization problem with
the 3D model could require more than 125 days, which is not a reasonable time.

The values of φo are reported on Table II. The shape of the optimized microfluidic mixer, its
concentration distribution, and the concentration evolution of a particle in its central streamline,
obtained with the 2D model, are depicted in Figure 4. The mixing time associated to this mixer
is about 0.10 μs. This value is 10 times lower than the mixing times achieved by previous mixer
designs with the same 2D model.14, 17 In those works, the mixing times were greater than 1 μs. We
attribute this improvement mainly to three factors: (i) the width of the mixing region (i.e., the area,
defined by (x, y) ∈ [0, 2] × [14, 19] μm and depicted in Figure 5, where both fluids are mainly
mixed) which reaches a minimum value of about 1.1 μm; (ii) the angle θ of the inlet side channels,
whose value is about π /5 radians (this angle was fixed to 0 in Refs. 14, 15, and 17); and (iii) the
choice of adequate injection velocities is set to us = 5.2 m s−1 and uc = 0.038 m s−1 (in that case, the

FIG. 4. Optimized mixer simulated with the 2D model: (a) shape of the optimized mixer with a superposed color plot of the
denaturant concentration distribution and (b) the time evolution of the denaturant concentration of a particle in the symmetry
streamline.
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FIG. 5. Comparison of the solutions obtained in the mixing region with the optimized mixer considering the 3D model
(subfigures (a) and (c)) and the 2D model (subfigures (b) and (d)). (a) and (b) show denaturant concentration distributions
while (c) and (d) plot velocity amplitude distributions in the symmetric plane z = 0 μm. For the 3D case, the figure also
shows, in the inset detail views, the X-Z plane slices of the concentration and velocity amplitude distributions at the plane
defined by y = 16.5 μm (represented with a horizontal black lines).

Reynolds number Re, defined in Sec. II B, is around 9). Indeed, as can be observed in Figure 5, the
shape of both corners �w1 (stretched along the Y-direction) and �w2 (sharply pointed wedge pointing
roughly along the Y-axis) yields a reduced channel width of 1.1 μm near y = 16.5 μm, where the
maximum velocity rises up to 26 m s−1, which helps to accelerate the mixing time. Moreover, we
note that the optimized values of θ , uc, and us are included inside the admissible space 	, not on its
boundary, which tends to show that the optimization process is not limited by the design constraints.
The existence of such optimal values has been also observed experimentally in previous studies.
More precisely, in Ref. 15, the authors found that there exists an optimal ratio of side-to-center flow
rate in these mixers. For instance, if the flow is pinched too aggressively and the maximum velocities
are limited, then the region of non-negligible diffusion moves up into the slow moving center stream,
and thus the diffusive mixing occurs in a relatively low velocity region resulting in longer mixing
times. Furthermore, the study presented in Ref. 16 highlights the importance of an optimal inclined
side channels (i.e., θ > 0). On the one hand, strong inclinations provoke centripetal accelerations of
the fluid which result in secondary flows that deteriorate mixing performance. On the other hand,
slight inclinations reduce these centripetal accelerations but lower the rate of stretching of material
lines in the mixing region.

Remark 2: As said in Sec. IV A, during this work α = 0.9 and ω = 0.3 which corresponds to a
reduction of 60% of the denaturant concentration. Those values were also considered in Refs. 14 and
17, and thus the results obtained here can be directly compared with those former studies. However,
in Ref. 16 the authors used a denaturant concentration reduction of 80% and obtained a mixing
time of 1 μs. If we apply the mixing definition of Ref. 16 to our own design, our design has a mixing
time of 0.4 μs (even though it is not specifically designed to minimize the cost function described in
Ref. 16).

We also compute the mixing time for this optimum design using the 3D model. To this aim, we
extrude the 2D optimal shape (see Figure 6) and we evaluate it using the 3D model. The predicted
mixing time is also around 0.10 μs (the difference in mixing times with the 2D model is lower than
about 4%). In Figure 5, we show the concentration and velocity amplitude distributions achieved by
the 2D and 3D models in the z = 0 μm midplane and considering the mixing region. Both solutions
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FIG. 6. Sample results from the optimized mixer design as simulated with the 3D model. Isometric views of the shape of
the optimized mixer are shown, considering the computational domain �3D,s defined in Sec. II A, with representation of (a)
the concentration distribution, and (b) the velocity amplitude distribution.

exhibit similar characteristics, although we can observe some differences, especially in the velocity
field; for the 3D case: (i) Re is around 7 (instead of 9 in the 2D case); and (ii) the maximum velocity
reached near y = 16.5 μm is 19 m s−1 (instead of 26 m s−1 in the 2D case). Figure 7 shows selected
streamlines generated by the 3D velocity field in the plane z = 0 μm. As we can observe on this
figure, the fluid remains laminar. The concentration distribution as well as the velocity amplitude
distribution, both obtained with the 3D model, are shown in Figures 6(a) and 6(b), respectively.
These two figures exhibit the so-called wall effect,33 since the no-slip condition at the mixer walls
results in low velocity values near those walls. This can also be observed in Figure 5, where the X-Z
slices of the concentration and velocity amplitude distributions are depicted. These low velocities
result in higher denaturant concentrations in these regions. However, the mixer is designed to be
relatively insensitive to such wall effects by maintaining a relatively large depth of 10 μm (while
having a minimum channel width of 1.1 μm in the mixing region).

The results of the sensitivity analysis of the optimized parameters presented in Sec. III D when
β = 1%, 5%, 10%, and 20% are reported in Table III.

We first focus on the case where the amplitudes of the perturbations applied to φo are lower
than 1%. We observe that the optimized mixer has a better mixing time in 77% of the cases. We
attribute the imperfect prediction of the 3D optimum to, on the one hand, the lack of precision of
the considered MSA method (due to the high computational time required to evaluate Eq. (4), the
number of iteration of the algorithm, and thus its precision, has been restricted) and, on the other
hand, the differences between the 2D and 3D models. However, it is important to mention that the

TABLE III. Mean, minimum, and maximum percent variation (%) in the
mixing time obtained by considering the 3D model and by perturbing ran-
domly all the parameters of φo with a maximum amplitude of 1%, 5%, 10%,
and 20% of their initial value.

Maximum amplitude (%) Mean Minimum Maximum

1 1.2 0.1 2.1
5 6.1 0.6 12.7
10 13.7 2.5 29.2
20 21.7 4.4 45.7
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FIG. 7. Selected streamlines (gray lines) generated by considering the velocity field obtained with the 3D model in the plane
z = 0 μm.

mean mixing time variation between the optimized mixer and the mixers with the lowest mixing
times, is smaller than 0.4%. This result suggests that the optimized mixer may be considered a
solution close to a local minimum of Problem (8) when the 3D model is used.

Furthermore, as can be seen in Table III (column Mean), the mean percent variation in the
mixing time (caused by variations in the input parameters) is proportional to the maximum percent
variation of the parameter perturbation. In particular, the mixing times of the perturbed mixers are
of the same order as the mixing time of the optimized mixer, suggesting the optimized solution
is stable. Additionally, even in the worst case (i.e., Table III (row 20%, column Maximum)), the
perturbed mixer still exhibits a mixing time of 0.15 μs, which is a significant improvement compared
to previous mixers proposed in literature.14, 15 All those results indicate that φo is a robust solution
for our design problem.

V. CONCLUSIONS

We explored the design of a particular fast hydrodynamic focusing microfluidic mixer for protein
folding. The main objective was to reduce the mixing time (defined here as the reduction of the
denaturant concentration of the central streamline particles) of this kind of mixer by optimizing the
shape (including the angle of the side channels) and the injection velocities. Several similar mixers
have been developed in Refs. 14–17, and 23, but the best previous designs generate mixing times of
1 μs. We were interested in improving this performance.

We introduced a numerical model used to compute the mixing time of a mixer according
to the defined design variables. This model, based on a finite element method approximation of
the incompressible Navier-Stokes equations coupled with the convective diffusion equation, was
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evaluated in 2D and 3D versions. Our goal was to describe the ability of the 2D model in approxi-
mating the behavior of the 3D model.

The results show that the 2D and 3D models exhibit similar mixing time with mean errors
of 15% which were considered as reasonable. Thus, we concluded that the 2D model could be
used in the optimization process to greatly reduce the computational time. Second, we defined the
optimization problem associated to the design of our device, and solved this using a MSA. The
optimized mixer shows a mixing time of 0.1 μs, which represents a decrease of a factor about 10
compared to previous best known mixers presented in Refs. 16 and 17. We attribute most of this
improvement to two primary factors:

(i) The angle of π /5 radians at the intersection of the inlet channels which helps to avoid strong
centripetal accelerations in the inlet side channel streams. This phenomenon was also observed
experimentally in Ref. 16, and our model helps address this observable behavior.

(ii) The choice of the inlet velocities (us = 5.2 m s−1 and uc = 0.038 m s−1), which were not
rigorously optimized numerically in previous work (such as in Ref. 14 in which us = 3.25 m s−1

and uc = 0.032 m s−1), and which dramatically impact the mixing time.

Finally, we verified the robustness of the optimized mixer performances to perturbations of its
optimization parameters and considering the 3D model. The results show that the generated mixer
design is robust to perturbations by generating mixing time variations of the same order than the
parameters ones. Thus, this tends to show that the 2D optimized mixer can be considered as optimal
for the 3D case.

The brief sensitivity analysis presented here should be extended into a more extensive study;
and we are in the process of carrying this out. Of particular interest is the analysis of the impact
on mixing time of various geometrical (such as the length and width of the channels or the mixer
depth) and flow conditions (such as the injection velocities) variables. The homogeneity of the
mixing time along the center inlet should also be verified. The objective of this future work is to
provide better recommendations and guidelines for the fabrication process of the device introduced
here.
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APPENDIX: OPTIMIZATION ALGORITHM

In this section, we describe in detail the optimization algorithm and the parameters used to solve
Problem (8).

This algorithm is a meta-heuristic global optimization method34–36 based on a hybridization
between a genetic algorithm (GA)37 (which approximates the solution of (8)) with a multi-layer
secant algorithm (MSA)38, 39 (which provides suitable initial populations for the GA). In the fol-
lowing, both GA and MSA methods are described in more details. A complete validation of these
algorithms on various industrial problems can be found in Refs. 17 and 39–43. Broadly speaking,
GAs are search techniques which try to solve problems like (8) through a stochastic process based
on an analogy with the Darwinian evolution of species.37 The GAs have many advantages as, for
example, they do not require sensitivity computation, they can solve complex optimization problems
(e.g., with high dimensional search space or function with various with local minima), and they are
intrinsically parallel. However, they also have some important drawbacks, as they exhibit slower
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convergence and lower accuracy than other method, such as gradient algorithms. Next, we describe
the GA considered during this work:

• Step 1—Inputs: User must define four parameters: Np ∈ IN, Ng ∈ IN, pm ∈ [0, 1], and
pc ∈ [0, 1]. The meaning of those parameters is clarified later in the following steps. In
addition, a first set, called “initial population” and denoted by X0 = {x0

j ∈ 	, j = 1, . . . , Np},
of Np points (called “individuals”) in 	 is also provided by user.

• Step 2—Generating new populations: Starting from X0, we recursively create Ng new
populations by applying four stochastic processes: “selection,” “crossover,” “mutation,” and
“elitism,” which are described in Steps 2.1, 2.2, 2.3, and 2.4, respectively. More precisely, let
Xi = {xi

j ∈ 	, j = 1, . . . , Np}, with i = 1, . . . , Ng − 1, denotes the population at iteration i.
Then, using the (Np, N)-real valued matrix:

Xi =

⎡
⎢⎢⎣

xi
1

...
xi

Np

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xi
1(1) . . . xi

1(N )
...

. . .
...

xi
Np

(1) . . . xi
Np

(N )

⎤
⎥⎥⎦ ,

with xi
j = (xi

j (1), . . . , xi
j (N )) ∈ 	, Xi + 1 is obtained by considering:

Xi+1 = (IN − E i )(CiS i X i + Mi ) + E i X i ,

where matrices S i , Ci , Mi , E i , and IN are described as follows.

– Step 2.1—Selection: We randomly select Np individuals from Xi with eventual repetitions.
Each individual xi

j ∈ Xi , with j = 1, . . . , Np, has a probability to be selected during this

process which is given by J−1
2D (xi

j )/
∑Np

k=1 J−1
2D (xi

k). This step can be summarized as

Xi+1,1 = S i X i ,

where S i is a (Np, Np)-matrix with S i
j,k = 1 if the kth individual of Xi is the jth selected

individual and S i
j,k = 0 otherwise.

– Step 2.2—Crossover: For each pair of consecutive individuals (rows) 2j − 1 and 2j in Xi+1,1,
with 1 ≤ j ≤ floor(Np/2) (where floor(X) is the nearest integer lower than or equal to X), we
determine, with a probability pc, if those rows exchange data or if they are directly copied
into an intermediate population denoted by Xi+1,2. Mathematically, this step can be written
as

Xi+1,2 = Ci X i+1,1,

where Ci is a real-valued (Np, Np)-matrix. The coefficients of the (2j − 1)th and 2jth rows of
Ci , with 1 ≤ j ≤ floor(Np/2), are given by

Ci
2 j−1,2 j−1 = λ1, Ci

2 j−1,2 j = 1 − λ1, Ci
2 j,2 j = λ2, Ci

2 j,2 j−1 = 1 − λ2

where λ1 = λ2 = 1, with a probability 1 − pc, or λ1 and λ2 are randomly chosen in
]0, 1[, considering a uniform distribution, in other case. Other coefficients of Ci are set to 0.
If Np is odd then we also set Ci

Np,Np
= 1 and then the Npth row of Xi+1,1 is directly copied in

Xi+1,2.
– Step 2.3—Mutation: We decide, with a probability pm, if each row of Xi+1,2 is randomly

perturbed or not. This step is defined by

Xi+1,3 = Xi+1,2 + Mi ,

where Mi is a real-valued (Np, N)-matrix where the jth row, j = 1, . . . , Np, is equal to
0, with a probability 1-pm, or a random vector mj ∈ IRN, generated considering a uniform
distribution in the subset of IRN such that xi+1,2

j + m j ∈ 	, otherwise.
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– Step 2.4—Elitism: Let xi
b, where b ∈ 1, . . . , Np, be the individual in Xi with the lowest value

of J2D (or, if there exists various, one of those individuals selected randomly). If xi
b has a

lower J2D value than all the individuals in Xi+1,3, it is directly copied at the bth row of Xi+1.
This step can be formalized as

Xi+1 = (IN − E i )(Xi+1,3) + E i X i ,

where IN is the identity matrix of size N and E i is a real-valued (Np, Np)-matrix such that
E i (b, b) = 1 if xi

b has a lower J2D value than all the individuals in Xi+1,3 and 0 otherwise,
E i = 0 elsewhere.

• Step 3—Output: After Ng iterations, the GA stops and returns an output solution denoted by

G AO(X0, Np, Ng, pm, pc) = argmin{J2D(xi
j )/xi

j is the j th row of Xi ,

i = 1, . . . , Ng, j = 1, . . . , Np).

In order to improve the precision and the computational time of the GA previously described,
we consider the MSA described next:

• Step 1—Inputs: The user defines the following parameters: lmax ∈ IN, Np ∈ IN, Ng ∈ IN, pm

∈ [0, 1], and pc ∈ [0, 1].
• Step 2—Initial population: X0

1 = {x0
1, j ∈ 	, j = 1, . . . , Np} is randomly generated, consid-

ering a uniform distribution.
• Step 3—Main loop: For l from 1 to lmax :

– Step 3.1: We compute ol = G AO(X0
l , Np, Ng, pm, pc).

– Step 3.2: We build X0
l+1 = {x0

l+1, j ∈ 	, j = 1, . . . , Np} as following:
∀j ∈ {1, . . . , Np}, if J2D(ol ) = J2D(x0

l, j ) we set

x0
l+1, j = x0

l, j ,

else we set

x0
l+1, j = proj	(x0

l, j − J2D(ol)
ol − x0

l, j

J2D(ol) − J2D(x0
l, j )

),

where proj	 : IRN → 	 is the projection function such that proj	(x)(i)
= min(max(x(i),	(i)), 	(i)), with i = 1, . . . , N.

• Step 4—Output: The algorithm returns the following output:

M S AO(lmax, Np, Ng, pm, pc) = argmin{J2D(ol)/ l = 1, . . . , lmax}.

The numerical experiments presented in Refs. 40 and 43 suggest that considering the previous
MSA instead of GA alone reduces the computational time needed to solve optimization problems.

During this work, the MSA, included in the software Global Optimization Platform, which
can be downloaded freely from http://www.mat.ucm.es/momat/software.htm, has been applied with
(lmax , Ng, Np, pm, pc) = (20, 20, 20, 0.5, 0.55). This set of MSA parameters has given good results
(in terms of computational time and precision) on other complex optimization problems.40–43
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